29 Setembro, 2017 Média móvel por convolução O que é média móvel e para que é bom Como a média móvel é feita usando a convolução Média móvel é uma operação simples usada geralmente para suprimir o ruído de um sinal: ajustamos o valor de cada ponto para a Média dos valores em sua vizinhança. Por uma fórmula: Aqui x é a entrada ey é o sinal de saída, enquanto o tamanho da janela é w, suposto ser ímpar. A fórmula acima descreve uma operação simétrica: as amostras são tomadas de ambos os lados do ponto real. Abaixo está um exemplo da vida real. O ponto em que a janela é colocada realmente é vermelho. Valores fora de x são supostos ser zeros: Para brincar e ver os efeitos da média móvel, dê uma olhada nesta demonstração interativa. Como fazê-lo por convolução Como você pode ter reconhecido, o cálculo da média móvel simples é semelhante à convolução: em ambos os casos, uma janela é deslizada ao longo do sinal e os elementos na janela são resumidos. Então, dar-lhe uma tentativa de fazer a mesma coisa usando convolução. Use os seguintes parâmetros: A saída desejada é: Como primeira aproximação, vamos tentar o que obtemos ao converter o sinal x pelo k kernel seguinte: A saída é exatamente três vezes maior do que o esperado. Também pode ser visto que os valores de saída são o resumo dos três elementos na janela. É porque durante a convolução a janela é deslizada ao longo, todos os elementos nele são multiplicados por um e, em seguida, resumido: yk 1 cdot x 1 cdot x 1 cdot x Para obter os valores desejados de y. A saída deve ser dividida por 3: Por uma fórmula incluindo a divisão: Mas não seria ótimo para fazer a divisão durante convolução Aqui vem a idéia, reorganizando a equação: Então vamos usar o k kernel seguinte: Desta forma, vamos Obter a saída desejada: Em geral: se queremos fazer a média móvel por convolução tendo um tamanho de janela de w. Nós usaremos o k kernel seguinte: Uma função simples que faz a média móvel é: Um exemplo de uso é: Usando o MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e anexar a média móvel a essa matriz Estou tentando calcular a média móvel de 3 dias de baixo para cima da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: Tentei implementar o comando conv, mas estou recebendo um erro. Aqui está o comando conv que eu tenho tentado usar na segunda coluna da matriz a: A saída que desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu gostaria muito. Obrigado Para a coluna 2 da matriz a, estou computando a média móvel de 3 dias da seguinte maneira e colocando o resultado na coluna 4 da matriz a (I renomeado como a matriz 39 como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14, 11 é 14 a média de 3 dias de 14, 11, 8 é 11 a média de 3 dias de 11, 8, 5 é 8 ea média de 3 dias de 8, 5, 2 é 5. Não há nenhum valor nas 2 linhas inferiores para a 4a coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faz sentido ndash Aaron Jun 12 13 em 1:28 Em geral, seria útil se você mostrar o erro. Neste caso você está fazendo duas coisas erradas: Primeiro, sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Segundo, observe o tamanho de c. Você não pode apenas caber c em um. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você quer. Criado em quarta-feira, 08 de outubro de 2008 20:04 Última atualização em Quinta, 14 Março 2017 01:29 Escrito por Batuhan Osmanoglu Acessos: 41479 Média em Movimento Em Matlab Muitas vezes eu me encontro na necessidade de A média dos dados que tenho para reduzir o ruído um pouco. Eu escrevi funções de casal para fazer exatamente o que eu quero, mas matlabs construído em função de filtro funciona muito bem também. Aqui Ill escrever sobre 1D e 2D média de dados. 1D filtro pode ser realizado usando a função de filtro. A função de filtro requer pelo menos três parâmetros de entrada: o coeficiente do numerador para o filtro (b), o coeficiente do denominador para o filtro (a) e os dados (X), é claro. Um filtro de média em execução pode ser definido simplesmente por: Para dados 2D, podemos usar a função Matlabs filter2. Para obter mais informações sobre como o filtro funciona, você pode digitar: Aqui está uma implementação rápida e suja de um filtro de média móvel 16 por 16. Primeiro precisamos definir o filtro. Uma vez que tudo o que queremos é a contribuição igual de todos os vizinhos, podemos apenas usar a função uns. Nós dividimos tudo com 256 (1616) desde que nós não queremos mudar o nível geral (amplitude) do sinal. Para aplicar o filtro podemos simplesmente dizer o seguinte Abaixo estão os resultados para a fase de um interferograma SAR. Neste caso Range está no eixo Y e Azimuth é mapeado no eixo X. O filtro foi 4 pixels de largura em Range e 16 pixels de largura em Azimuth. Ive tem um vetor e eu quero calcular a média móvel dele (usando uma janela de largura 5). Por exemplo, se o vector em questão for 1,2,3,4,5,6,7,8. Então a primeira entrada do vetor resultante deve ser a soma de todas as entradas em 1,2,3,4,5 (ou seja, 15) a segunda entrada do vetor resultante deve ser a soma de todas as entradas em 2,3,4, 5,6 (ie 20) etc. No final, o vector resultante deve ser 15,20,25,30. Como posso fazer isso? A função conv está bem no seu beco: Três respostas, três métodos diferentes. Aqui está um benchmark rápido (diferentes tamanhos de entrada, largura de janela fixa de 5) usando timeit sinta-se livre para picar buracos nele (nos comentários), se você acha que precisa ser refinado. Conv surge como a abordagem mais rápida é cerca de duas vezes mais rápido que a aproximação moedas (usando filtro). E cerca de quatro vezes mais rápido que Luis Mendos abordagem (usando cumsum). Aqui está outro benchmark (tamanho de entrada fixo de 1e4: diferentes larguras de janela). Aqui, Luis Mendos cumsum abordagem surge como o vencedor claro, porque a sua complexidade é principalmente governada pelo comprimento da entrada e é insensível à largura da janela. Conclusão Para resumir, você deve usar a abordagem conv se sua janela é relativamente pequena, use a abordagem cumsum se sua janela é relativamente grande. Código (para benchmarks)
No comments:
Post a Comment